skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ribeiro, Giulia M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Heterotrophic protists are vital in Earth’s ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes’ evolutionary history and ecological significance in Earth’s ecosystems, using testate amoebae as a proxy. 
    more » « less